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Abstract
The regulation of cerebral blood flow (CBF) is a complex integrated process that is critical

for supporting healthy brain function. Studies have demonstrated a high incidence of alter-

ations in CBF in patients suffering from migraine with and without aura during different

phases of attacks. However, the CBF data collected interictally has failed to show any dis-

tinguishing features or clues as to the underlying pathophysiology of the disease. In this

study we used the magnetic resonance imaging (MRI) technique—arterial spin labeling

(ASL)—to non-invasively and quantitatively measure regional CBF (rCBF) in a case-con-

trolled study of interictal migraine. We examined both the regional and global CBF differ-

ences between the groups, and found a significant increase in rCBF in the primary

somatosensory cortex (S1) of migraine patients. The CBF values in S1 were positively cor-

related with the headache attack frequency, but were unrelated to the duration of illness or

age of the patients. Additionally, 82% of patients reported skin hypersensitivity (cutaneous

allodynia) during migraine, suggesting atypical processing of somatosensory stimuli. Our

results demonstrate the presence of a disease-specific functional deficit in a known region

of the trigemino-cortical pathway, which may be driven by adaptive or maladaptive func-

tional plasticity. These findings may in part explain the altered sensory experiences

reported between migraine attacks.

Introduction
The human brain is exquisitely sensitive to changes in cerebral blood flow (CBF). Under nor-
mal resting conditions, it has been shown that regional CBF (rCBF) is closely coupled with glu-
cose utilization, oxygen consumption, and aerobic glycolysis [1, 2]. This relationship is thought
to be regulated locally and dynamically by neurons and astrocytes [3], with direct autonomic
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control of the cerebral vasculature [4]. At the systems level, there is a potential coupling
between CBF and brain functional network topology [5–7]. Therefore, the human brain exhib-
its a hierarchical organization during rest, the maintenance of which demands the majority of
the brain’s metabolic energy and blood flow [8].

Migraine is a complex disorder that is accompanied by significant derangements in neuro-
vascular function [9–11]. This dysfunction may have important consequences for resting brain
perfusion, as minor disruptions in CBF could reflect subtle changes in metabolism resulting
from the underlying condition. Perturbations of brain metabolism have been demonstrated
both before and during migraine attacks [12, 13], indicating a possible increase in energy
demands caused by neuronal hyperexcitability [14–16]. In addition, direct immuno-vascular
interactions and autonomic dysfunction may act as potential modulators of the cerebral circu-
lation [4, 17]. The presence of altered metabolism or energetic dysfunction, together with
regional perfusion deficits, could indicate the vulnerability of specific neuronal populations.

Human imaging studies have shown varying effects on CBF in the different phases of
migraine headache (reviewed in [18]). A small proportion of these findings represent CBF
changes that are not related to the migraine attack itself, as the data were collected interictally
[19–23]. Notwithstanding the contributions of these studies, several methodological factors
limit their scope and applicability. For example, the implementation of perfusion imaging has
exclusively relied upon methods that involve the inhalation or injection of radioactive tracers
or contrast agents, which limits its repeatability and application in healthy volunteers. Addi-
tional sources of variation may be attributed to the clinical inclusion criteria, symptomatology,
and attack characteristics of migraine patients [24]; hence the effects reported in these studies
might not be directly comparable.

In this study we used the magnetic resonance imaging (MRI) technique—arterial spin label-
ing (ASL)—to non-invasively and quantitatively measure rCBF in a case-controlled study of
migraine. ASL provides superior spatial resolution and sensitivity relative to traditional nuclear
functional imaging techniques [25, 26]; as such, we hypothesized that the alterations in rCBF
might in fact be more localized than has been previously reported in migraine, specifically
affecting those brain regions known to be implicated in processing trigeminal nociceptive
information [27]. It is noteworthy that those cortical and subcortical regions may have a high
capacity for neuroplasticity, therefore basal differences in brain perfusion may help distinguish
brain regions that are more vulnerable to repetitive migraine attacks.

Materials and Methods

Ethical approval and consent
The Institutional Review Board at McLean Hospital, Harvard Medical School, approved the
study. All experiments fulfilled the criteria of the Helsinki accord for human research.
Informed written consent was obtained from all participants.

Participants
Thirty-four right-handed participants were enrolled in this study: 17 migraine patients (mean
age ± SD; 28±9.1, range 19–48 years, 5 male/ 12 female) and 17 healthy age- and sex-matched
controls. To minimize variability in the clinical inclusion criteria, symptomology, and attack
characteristics [24]; we restricted the patient selection to migraine without aura. The migraine
patients had to meet the following criteria: (i) episodic migraine as classified in the Interna-
tional Classification for Headache Disorders, second edition (ICHD-II); (ii) had suffered from
episodic migraine for�3 years; and (iii) have no migraine 72 h prior to the study session and
no symptoms of developing a migraine during or 24h after the scans. Patients were excluded if
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they had chronic migraine or were taking daily medication including prophylactic migraine
treatment. Healthy controls were excluded if they had any type of migraine or first-degree rela-
tives with a history of any type of migraine. Females were excluded if they were pregnant.

Demographic and headache characteristics
Retrospective migraine attack characteristics were collected on inclusion (see Table 1). Patients
were also asked to complete the Allodynia Symptom Checklist, assessing the frequency of allo-
dynia symptoms during headache. The questionnaire was as follows: Do you experience pain
or unpleasant sensation on your skin during a migraine attack when you engage in any of the
following activities (Yes, No, or Not applicable): (i) combing your hair; (ii) pulling your hair
back (e.g. ponytail); (iii) shaving your face; (iv) wearing eyeglasses; (v) wearing necklaces; (vi)
taking a shower; (vii) resting your head on a pillow; (viii) being exposed to heat (e.g. standing
next to a stove while cooking); (ix) being exposed to cold (e.g. breathing through your nose on
a cold day); (x) wearing tight clothes; (xi) wearing a watch or bracelets [28–30].

MRI acquisition
Participants were scanned in supine position on a Siemens Magnetom 3T whole-body MRI
scanner (Siemens Healthcare Inc., USA) using a 12-channel head coil. For image registration
purposes, high-resolution T1-weighted anatomical scan was acquired using a 3DMPRAGE
sequence [FOV = 256 mm2, TR/TE = 2000/3.5ms, 256×256 matrix, 224 slices, voxel size
1x1x1mm]. Perfusion measurements were performed using pseudo-continuous arterial spin
labeling (pCASL) [31, 32]. Arterial blood was labeled using a 1.5sec train of RF pulses and a
single post-labeling delay (PLD) time of 1.3sec. The offset distance of the labeling plane was
positioned 90mm beneath the center of the acquired slices (parallel to the AC-PC line), ensur-
ing optimal labeling of the posterior cerebral circulation [33]. Imaging readout was multi-slice
single-shot GE-EPI [TR/TE = 3870/12, FOV = 220mm2, matrix = 64x64, 26 slices acquired in
ascending order (no slice gap), slice thickness = 5mm, slice acquisition time = 41.9ms]. For sig-
nal averaging purposes, 30 tag-control pairs of images were collected in succession, corre-
sponding to 4.01 minutes. Two reference calibration images (no labeling or background
suppression, TR = 7sec, all other parameters identical to pCASL scan) were collected to enable
the estimation of the equilibrium magnetization of arterial blood. All participants were imaged
under identical conditions with eyes closed.

Quantification of cerebral blood flow
The pCASL data were motion corrected for the control and label image series separately. To
minimize blood-oxygen-level-dependent (BOLD)-contamination, the tag-control difference
images were calculated using surround subtraction [34], and fitted to the single-compartment
Standard Kinetic Model [35]:

CBF ¼ 6000 � l � R1a

2 � a � ððe�oR1aÞ � ðe�ðtþoÞR1aÞÞ � DM
M0

¼ Z � DM
M0

where λ is the blood-brain partition coefficient, ΔM is the difference signal between the control
and label acquisitions, R1a is the longitudinal relaxation rate of blood, τ is the labeling time, ω
is the post labeling delay time, α is the labeling efficiency, andM0 is the mean signal intensity
of the two calibration images. The parameters used in this study were R1a = 0.67 sec-1[36], α =
0.85 [31], λ = 0.9 mL/g [37], τ = 1.5 sec, ω = 1300 msec. The parameter Z accounts for the serial
acquisition of slices. The transformation of CBF to absolute units (ml/100g/min) was per-
formed in native space.
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Implementation of the pCASL sequence and absolute CBF quantification follows current
recommendations for the optimal use of ASL in clinical populations [38]. Further details of the
retest reliability of the pCASL technique have been established previously [39].

Image post-processing
Imaging data were processed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm). The high-
resolution structural images were used to align the CBF data to MNI152 standard space
[average T1 brain image constructed from 152 normal subjects at the Montreal Neurological
Institute (MNI), Montreal, QC, Canada]. Spatial normalization was performed by co-regis-
tering the mean motion-corrected ASL image to the T1 image. The spatial normalization
parameters required to warp the T1 image to MNI space were estimated (via SPM unified
segmentation) and these transformation parameters were applied to the CBF map. The data
were spatially smoothed using a 6mm FWHM (full- width at half-maximum) Gaussian ker-
nel to accommodate for gyral variability across subjects. Group-level voxel-wise changes in
regional CBF were calculated under the framework of the general linear model (GLM) using
a random effects independent two-sample t-test. Significant clusters were displayed with a
probability threshold of p<0.05, corrected for multiple comparisons using family-wise error
rate (FWE).

Correlation between CBF and clinical variables
The linear dependence between the magnitude of the CBF and the patient’s clinical characteris-
tics was examined using Pearson’s correlation coefficient.

Table 1. Clinical details andmigraine history. Abbreviations: Age, age in years; Sex, male (M)/female(F); Age at onset, age the headaches started in
years; Frequency, number of attacks per month (median values are given in brackets); Duration, duration of illness in years; Side, dominant side of headache
pain, left(L)/right(R); Allodynia, patients reporting at least one type of skin hypersensivity during migraine.

Subject Age Sex Age at onset Duration Frequency Side Allodynia

M01 25 F 15 10 12 L & R Yes

M02 48 F 25 23 1–3 (2) L No

M03 24 F 20 4 1 L Yes

M04 26 M 23 3 9 R Yes

M05 30 F 21 9 2 R Yes

M06 38 F 11 27 4–8 (6) L Yes

M07 38 F 26 12 1–2 (1.5) L Yes

M08 19 F 12 7 4–10 (7) L & R Yes

M09 19 F 14 5 0.3 L Yes

M10 18 M 8 10 2 L & R Yes

M11 21 M 6 15 3–4 (3.5) R No

M12 45 F 15 30 4 R Yes

M13 29 M 17 12 3–4 (3.5) L No

M14 23 F 13 10 9 L Yes

M15 23 F 13 10 2–3 (2.5) L & R Yes

M16 33 M 24 9 4 L & R Yes

M17 23 F 13 10 4–6 (5) R Yes

doi:10.1371/journal.pone.0137971.t001
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Results

Demographic and headache characteristics
Patients reported a mean migraine (disease) duration of 12 years (±SD: 7.6, range: 3–30 years).
The attack frequency ranged from 0.3–12 episodes per month (mean±SD: 4.8±4.1). Most
patients reported unilateral pain (n = 5 right-sided, n = 7 left-sided), but some reported bilat-
eral headache pain (n = 5). Patient characteristics are provided in Table 1. Importantly, there
was a significant correlation between patients' duration of migraine and their age (r = 0.76,
p = 0.0004).

Subjects were also asked to fill out a questionnaire to determine if they usually developed
cutaneous allodynia during the migraine attack (Fig 1). A total 82% (14) of the patients
reported to at least one type of skin hypersensitity during migraine, 18% (3) were unaware of
any abnormal skin sensitivity. These proportions changed to 57% (10) reporting a minimum of
three symptoms. The total number of definitive responses (yes) to individual questions varied
greatly. Certain items in the questionnaire were sex specific (e.g. shaving, earrings), some items
were not applicable to every patient (e.g. eyeglasses), and not every patient was able to reflect
on whether a certain activity was bothersome during migraine (unsure).

Group differences in rCBF
Individual CBF maps were averaged over subjects in standard atlas space. The resulting distri-
bution of regional CBF (rCBF) in the migraine patients and healthy controls is shown in Fig 2.
Whole-brain statistical comparison revealed migraineurs had significantly higher rCBF in the
somatosensory cortex than the controls. These CBF changes were localized to both the right
and left post-central gyrus (extending into parts of the right inferior parietal cortex, right supe-
rior parietal cortex, and the left pre-central gyrus) (Fig 3). There were no significant regions of
decreased perfusion (i.e. Migraine<Controls). Furthermore, there were no significant differ-
ences in the global CBF between patients and controls (independent two-sample t-test:
p = 0.9338).

Correlation between rCBF and headache characteristics
The results revealed a significant positive correlation between rCBF and the attack frequency
(r = 0.556, p = 0.025) (Fig 4A), indicating patients with a higher number of attacks had higher
levels of CBF within the S1 area. There were no significant correlations between CBF and the
patients' total number of cutaneous allodynia (CA) symptoms (r = 0.381, p = 0.145), duration
of migraine (r = 0.001, p = 0.996), or their age (r = 0.003, p = 0.991) (Fig 4B, 4C and 4D). We
exclude the possibility of age-related effects on rCBF.

Discussion
The present study demonstrates the utility of arterial spin-labeling (ASL) to derive non-inva-
sive, quantitative measures of regional CBF in the migraine brain. Parenchymal perfusion is an
important physiologic parameter in the evaluation and management of brain health as well as
a surrogate index of neural activity. We observed regional variations in CBF in S1, and these
changes were specifically related to the migraine attack frequency. The S1 area is strongly
implicated in the ascending trigemino-cortical nociceptive pathway. We discuss the known
functional plasticity of S1 and its possible interactions with altered sensory experiences in
migraine.
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S1 changes in migraine
An exciting new finding of this study is the fact that migraine patients show increased rCBF in
S1 compared to controls. Activation of the S1 region has been reported in approximately 75%
of human imaging studies of pain [40]. It is also the earliest site to be activated in studies of
laser-evoked pain [41], thus supporting a role for the S1 cortex in the sensory aspects of pain,
including localization and discrimination of pain intensity. While the focus of this study is not
on the migraine attack itself, the trigemino-cortical system remains an important pathway in
migraine pathophysiology [27]. Migraine patients can present with a number of interictal func-
tional abnormalities that are potentially related to the dysfunction of processing sensory infor-
mation, including altered sensitivity to light, sound, smell, touch, and pain [42]. Patients often
display a lack of habituation to repetitive sensory stimuli [15], which may relate to abnormal
thalamo-cortical activity [43]. In response to the repeated attacks, there is also evidence of
central sensitization in the trigeminal sensory pathway [44], which causes the clinical phenom-
enon of expanding cutaneous allodynia (CA) and hyperalgesia [45]. Somatosensory hypersen-
sitivity and the development of CA occurs in around two-thirds of migraineurs during an
attack [28, 29, 46], and approximately the same distribution of CA was reflected in our cohort
of patients (see Fig 1). Interestingly, there was a positive (but not significant) linear trend
between CBF in S1 and the number of reported CA symptoms during migraine (see Fig 4B).
Collectively, these clinical and imaging findings support an underlying dysfunction in S1 and
the trigemino-cortical pathway, which may cause vulnerability to migraine.

Adaptive or maladaptive changes in S1
A second important finding of this study is the relationship between headache frequency and
rCBF in the S1 area. Chronic or repetitive activation in response to heachache attacks may

Fig 1. Cutaneous allodynia symptom profile. Proportion of total responses to individual questionnaire items of skin hypersensitivity (bar chart). Inset
small pie charts show the percentage of patients that reported�1 and�3 symptoms (yes = red), and those that were unaware of any abnormal skin
sensitivity (no = green) [28–30].

doi:10.1371/journal.pone.0137971.g001
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cause S1 to undergo plastic changes that can be induced by either peripheral or central inputs.
Interestingly, the rCBF changes we observed were in the mid part of post-central gyrus, a loca-
tion compatible with the hand/face area of the somatosensory homunculus [47]. While it may
be the case that the receptive fields for this part of the body surface are spatially indistinguish-
able at the macroscopic level of the ASL signal; the CBF values did correlate positively with the
attack frequency, thus suggesting headache pain may be driving adaptive or maladaptive func-
tional plasticity that could be associated with increased local reorganization [48]. This hypothe-
sis is not only supported by functional data, but also by structural changes that have been
observed in migraine patients. For example, our group and others have demonstrated the pres-
ence of both grey and white matter changes in S1, which appear to track the ascending trigemi-
nal nociceptive pathway [49–52]. Although the measurements derived from structural MRI are
typically ambiguous in biological terms, it is possible that these functionally-related structural

Fig 2. Distribution of regional cerebral blood flow (rCBF). The maps illustrate the quantitative CBF values (ml/100g/min) across all subjects in the control
(A) and migraine groups (B). Group-wise changes in rCBF are displayed in the bottom row (C). Note the bilateral clusters of significantly increased rCBF in
the primary somatosensory cortices (S1). Statistical images are displayed with a cluster probability threshold of P<0.05, corrected for multiple comparisons
(FWE). Data are shown in Caret PALS space, with left/right orientations marked.

doi:10.1371/journal.pone.0137971.g002
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changes might explain the change in demand for CBF. However, direct evidence for synaptic
remodeling will need to be confirmed from more invasive experiments.

Variability of resting brain perfusion
To confidently compare CBF values across different cohorts of a population (i.e. migraine
patients vs. healthy controls), it is important to consider the between subject variability. Several
groups have conducted reliability studies of CBF measures employing ASL techniques [39].
The consensus is that ASL is comparable to other perfusion imaging techniques, such as posi-
tron emission tomography (PET) or single-photon emission computed tomography (SPECT).
The mean grey matter CBF values for both migraine patients and healthy controls fall within
the expected range for adults. However, the regional CBF estimates may be significantly
affected by partial volume (PV) effects since any one voxel is unlikely to contain only a single
tissue type [53–56]. The effects of PV are particularly problematic in areas that exhibit struc-
tural changes, such as tissue atrophy or morphology, thus we cannot exclude this potential
complication in the migraine population [57]. It should also be considered that all patients had
previously used acute and/or preventative medications which could theoretically alter CBF.
However, as the global CBF values were not significantly different between the patients or con-
trols, it is unlikely to be causing the effects [58]. Finally, the fact that we recruited migraine
patients without aura and excluded patients with chronic headache could mean the results are
not directly applicable to these groups, although there is no good evidence that these subtypes
are fundamentally different in terms of pathophysiology.

Conclusion
In this study we have shown that ASL is a versatile tool for investigating global and regional
brain perfusion in migraine. We observed changes in CBF at an unprecedented level of spatial

Fig 3. (A)Migraine-related increase of rCBF in the primary somatosensory cortices. Dotted black lines correspond to the boundary of central sulcus (CS)
and post-central sulcus (PoCS). Statistical images are displayed with a cluster probability threshold of P<0.05, corrected for multiple comparisons (FWE).
Data are shown in Caret PALS space, with left/right orientations marked. (B)Magnitude of the CBF changes within S1. Plots represent the mean (red line),
95% confidence interval (light-grey region), and 1 standard deviation (dark-grey region). Individual subjects data are shown in blue. Both groups are normally
distributed, and significant after independent two-sample T-test (p = 0.0021).

doi:10.1371/journal.pone.0137971.g003
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detail, and uncovered abnormal functioning in the primary somatosensory cortex (S1). The
fact that the CBF values in S1 were positively correlated with attack frequency, but not the
duration of illness or the age of the patients, suggests these effects may be driven by adaptive or
maladaptive functional plasticity. Also, many of the patients reported skin hypersensitivity
(cutaneous allodynia) during migraine, suggesting atypical processing of somatosensory sti-
muli. S1 is a known region of the ascending trigemino-cortical pathway, and local reorganiza-
tion could account for some of the altered sensory experiences reported between migraine
attacks. Based on this work, we envisage the ASL methodology could have direct clinical

Fig 4. Correlations between rCBF and clinical reported variables. (A) Headache frequency (which was positively correlated with CBF in S1). (B) Total
number of cutaneous allodynia (CA) symptoms during migraine, (C) Duration of illness, and (D) Age of the patients.

doi:10.1371/journal.pone.0137971.g004
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research applications in migraine, with the potential for assessing perfusion status before or
during migraine attacks, and in response to therapy [59].
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